
Introduction

Predicting pollution load at the soil-water interface is 
key to controlling runoff pollution in disturbed mining 
sites [1]. With the large-scale exploitation and smelting 
of ore, the solid resource and its waste (ore, waste ore, 
tailing sand, waste residue, etc.) result in the formation 
of heavy metal pollution flow in the soil-water interface 
under the effect of rainfall runoff [2-4]. In the long term, 
it could cause an increasingly prominent problem of 
heavy metal complex pollution in the manganese mine 
and the surrounding area [5]. This is particularly true for 

mining sites in the Hunan region of China, where large-
scale exploitation of metal manganese has generated 
large areas of degraded land.

The soil and water assessment tool (SWAT) model 
developed by the U.S. Department of Agriculture in 
1994 is a continuous distributed watershed environment 
model based on GIS software [6-7]. It has been widely 
applied to evaluate agricultural non-point source 
pollution [8-9]. The SWAT model includes two main 
parts: land surface process and water surface/confluence 
process. The former considers 8 modules of hydrology, 
meteorology, silt, soil temperature, crop growth, 
nutrient, pesticide, and agricultural management for 
system contribution; the later completes hydrological 
circulation and material migration of the basin through  
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2 modules of the river runoff calculation and the 
reservoir water balance and calculation [10-12]. SWAT 
has been widely applied in terms of hydrological 
analysis and simulation of non-point source pollution 
[13]. SWAT has been widely applied in the measurement 
of nutrients [14], pesticides [15], sediment [16-17], 
management [18-9], and total maximum daily loads 
(TMDL) water quality analysis [20] to study the 
formation and migration of basin non-point source 
pollution. However, there is less application of heavy 
metal pollution load in metal mine rainfall runoff.
[21]. For this study we used GPS, ARCGIS, and RS 
technology plus field experiments. A modified one-
dimensional migration model was embedded in the 
sediment migration source module of SWAT to establish 
an improved SWAT model for predicting manganese 
pollution load at the soil-water interface.

Data and Methods

Overview of the Research Area

The study mine is in Xiangtan in central Hunan. The 
topography is varied with undulating hill and mountain 
locations, the majority lying between 100 and 800 m 
above sea level. Climate type is a subtropical monsoon 
climate, with the average maximum temperature of 
17.4ºC. Rainfall is abundant, while the distribution  
of the four seasons is uneven, and annual rainfall is 
1,200-1,500 mm, between 60 and 80% falling between 
April and October. The study area (Fig. 1), Red 
Flag Xiangtan Manganese Mine, covers an area of  
2.6 km2 and is located in the town of Xiangtan Crane 

Ridge (112°21’-112°75’E, 27°21’-28°05’N) at an average 
altitude of 97.39 m. A large number of ore processing 
activities are distributed throughout the research 
area, including rock crushing, electrolytic manganese 
recovery, washing plants, tailings dams, and other 
infrastructure. Three more stations were added in 
the study area for gaining accurate and consistent 
rainfall data. Based on the existing rainfall data, spatial 
interpolation methods were employed to predict rainfall 
in the sub catchment areas (Fig. 1).

Sampling and Analytical Methods

Sampling and Pretreatment

The layout of the sample collection was based on 
simple random points. The distribution of sampling 
sites was set in a way of spatial random distribution and 
shown in Fig. 1. At each point, a 1.0 L surface water 
samples were collected during a period of moderate 
water flow and distributed across all land surface types 
represented in the area. Each sample was labelled with 
latitude and longitude coordinates from GPS. Moreover, 
surrounding environmental information of sampling 
points was recorded by taking pictures. In this study, 
55 soil samples were collected, and 9 (6, 10, 12, 18, 20, 
23, 25, 29, 36) of them were selected as representative 
sampling points based on the wide variety of soil type 
(Fig. 1).

Soil Saturation Hydraulic Conductivity

Soil saturation hydraulic conductivity is used to 
calculate the flow and drainage per unit time in soil 
profile, associating with water, time, area, and soil 
saturation degree (Table 1). Soil saturation hydraulic 
conductivity is calculated with the following formula:
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…where Ks is soil saturation conductivity (mm/h), Qss is 
water flux density (cm3/min), γb is disc radius (cm), and a 
is the factor associated with soil structure and capillary 
suction (0.2 cm-1).

Soil Bulk Density

Soil bulk density is associated with soil texture, 
structure, organic matter content, soil compactness, and 
cultivation measures (Table 1). And it is obtained from 
the following formula:

/b S rM Vρ =                          (2)

…where ρb is soil bulk density (g/cm3), Ms is the quality 
of soil after drying (g) and Vr is soil volume (100 cm3).

Fig. 1. Sampling point distribution and key features of the 
Xiangtan Manganese Mine.
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Soil Organic Carbon

Organic carbon contents of samples were determined 
by combustion and are shown in Table 1.

Nitrogen and Phosphorus Contents

Through the division of the study area, 18 sub-
basins were obtained (detailed in section 2.4). The 
data collection of nitrogen and phosphorus contents 

from these sub-basins represents the nitrogen and 
phosphorus properties of the entire study area. Total 
nitrogen was measured using the alkaline potassium 
persulfate digestion UV spectrophotometric method, and 
total phosphorus was determined with the ammonium 
molybdate spectrophotometric method. In this study, 
the content in water was multiplied by 1.1 times as the 
content of the interface flow. The SWAT model was 
able to automatically assign values to non-measurable 
nitrogen (Table 2).

Sampling point Soil type Sampling depth 
(cm)

Soil saturation conductivity 
(mm/h)

Soil bulk 
density

Organic carbon 
content (%)

soil_6 Forest red  soil
10 0.69

1.256
0.29

35 1.58 0.29

soil_10 Brown soil paddy soil
10 2.41

1.325
1.218

20 3.12 0.696

soil_12 Brown calcareous soil
10 7.85

1.452
0.986

20 41.36 0.406

soil_18 Brown soil paddy soil
15 2.65

1.215
1.798

30 3.42 0.928

soil_20 Brown calcareous soil
10 6.95

1.369
1.218

20 32.51 0.753

soil_23 Forest red soil
15 2.35

1.211
0.132

35 12.25 1.042

soil_25 Brown soil paddy soil
10 2.13

1.112
0.928

20 3.47 0.58

soil_29 Brown calcareous soil
20 21.36

1.214
0.986

40 13.54 0.406

soil_36 Forest red soil
30 4.58

1.207
0.29

60 3.41 0.174

Table 1. Saturation conductivity and soil bulk density and organic carbon content from representative sampling points.

Sub-basin N Content (mg/L) P Content (mg/L) Sub-basin N Content (mg/L) P Content (mg/L)

1 1.20 1.18 10 2.31 2.41

2 1.11 1.25 11 1.82 1.12

3 4.29 4.24 12 2.31 2.01

4 2.69 2.39 13 5.54 5.87

5 1.87 1.29 14 2.46 2.24

6 1.54 1.51 15 1.67 1.27

7 5.23 5.02 16 1.19 1.41

8 3.64 3.56 17 1.40 1.21

9 4.87 4.78 18 1.18 1.10

Table 2. Nitrogen and phosphorus contents in the soil-water boundary of the sub-basin.
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All the above parameter data were collected through 
ARCGIS and DBF, or grid format data were generated. 
Then the data were imported into the SWAT model.

Research Data

Data of Land Use Type

The non-point pollution source is mainly from 
agriculture, varying from fertilizers (e.g., ammonium 
carbide and calcium superphosphate), farming methods 
(e.g., ox ploughing), crop types (e.g., rice and sweet 
potato and cole), pesticides, and their dosages. The data 
of land use type are shown in Table 3.

Soil Type Data

The classification of soil types in the study zone 
is important in determining impact of water flow 
and contamination in the catchment. The type and 
reclassification of soil are shown in Table 4.

Basic Data

In the SWAT model, input of basic data is required 
to be divided into spatial data and attribute data (using 
Alber). Spatial data: DEM reflects the elevation, slope, 
and gradient of the research area and is mainly used 
for the model’s extraction of water system. A soil type 
distribution map reflects the spatial distribution of soil 
types. A land utilization type diagram reflects the status 
of land utilization. Attributed data: Meteorological 
information concludes data of 1998-2012 on rainfall, 
temperature, solar radiation, relative humidity, and wind 
speed. Hydrological information concludes initial gate 
size data and is used for calibration of runoff parameters. 
Water quality information concludes water analysis 
results of sampling points in the research area and is 
used for calibrating water quality parameters. Pollution 

Original 
classification

Reclassification

SWAT category option SWAT code

Paddy field Agricultural Land AGRL

Dry farm Agricultural Land AGRL

Forest land Agricultural Land AGRL

Open forest land Forest-Mixed FRST

Grassland coverage Pasture PAST

Bare land Southwestern U.S. 
(arid) SWRN

Waterway Water WATR

Swag Water WATR

Table 3. Original classification and reclassification of land use 
type in watershed.

Sampling point SWAT Name Soil order Great soil group

soil_6 Alfisol Brown forest soil Brown soil 10144

soil_10 Semi-luvisols Cinnamon soil Calcic cinnamon soil 11113

soil_12 Pedocal Chestnut soil Dark chestnut soil 12111

soil_18 Primarosols Chisley soil Red lithosol 15183

soil_20 Primarosols Rhogosol Red regosol 15193

soil_23 Semi-hydromorphic soil Mountain Meadow soil Mountain meadow soil 16121

soil_25 Semi-hydromorphic soil Waterlogged soil Waterlogged soil 16141

soil_29 Lakes and reservoirs Lakes and reservoirs Lakes and reservoirs 24101

soil_36 Lakes and reservoirs Lakes and reservoirs Lakes and reservoirs 24121

Table 4. Soil type classification data for representative sampling points.

Fig. 2. Definition of sub-basins used in description of mining 
area.
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source data includes discharge pollution sources of 
domestic, livestock breeding, aquaculture, and farmland.

Definition of Sub-Basin

According to the established database, spatial 
discretization in the SWAT model includes the 
delineation of sub-basins in the study area and the 
sub-division of hydrological response units (HRU). 
According to the locations of runoff collection points 
and the relationship between the each tributary, the 
watershed was divided into sub-basins, and then divided 
into several HRUs. Based on the analysis of land use and 
soil types, 18 sub-basins and 232 HRUs were defined 
(Fig. 2).

Construction of Improved SWAT Model 
and its Operation

Improved Conversion Kinetics Model 
of Manganese Migration

Manganese ion transport at the soil-water interface 
flow along with sediment, nitrogen, and phosphorus. 
Many metals transport with similar properties at the 
soil-water interface, which is dominated by water 
flow. Select the most appropriate migration model and 
program it in Fortran. The migration model was then 
embedded in the sediment migration source module of 
SWAT software, obtaining an improved SWAT model 
for predicting manganese pollution load at the soil-water 
interface.

Based on the comparative analysis of several 
important metal transfer models [22-24], the one-
dimensional mercury migration model of Lin was 
selected [25]:

1 [ ]x
i

C C C Nu D A
t x A x x H

∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂        (3)

The above model only considers the molecular 
diffusion and exchange between the heavy metal ions in 
a water body and river boundary, with no consideration 
given to the adsorption or desorption kinetics of heavy 
metals with the sediment. Therefore, correction factors δ 
and k were added to the base model to accommodate the 
differences in sediment/water partition:
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…where C is mercury concentration in the selected 
model (mg/L), t is time (s), Dx is longitudinal turbulent 

diffusion coefficient (m2/s), A is the cross-sectional 
area of pollution flow (m2), u is velocity of pollution 
flow (m/s), x is migration distance (m), Hi is depth of 
the water (m), N is exchange velocity of pollutants 
between the bottom mud and water (mg·m/(L·s)), k is 
distribution coefficient, C* is manganese concentration 
to be predicted (mg/L), Cs is manganese concentration 
on the suspended particles in the soil-water interface 
flow (mg/L), Cw is the manganese concentration in the 
soil-water interface flow (mg/L), and δ is element 
differential correction factor.

Determining δ and k

It was assumed that a consistent linear empirical 
relationship existed between mercury and manganese 
migration. According to the analysis that determined 
concentrations in water and soil samples (data from  
the Environmental Protection Bureau of Xiangtan), the 
ratio of mercury content to manganese ranged from  
0.2 to 0.8. The improved model, by embedding Eq. 
(3) in the SWAT model, was run with the determined  
data and the data from the Environmental Protection 
Bureau of Xiangtan, and the Nash Sutcliffe efficiency 
coefficient (Ens) and regression coefficient (R2) can be 
calculated with the following formulas [26-27]:
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…where i is the serial number of pollutants, N is total 
number of pollutants, Qi is the measured flow (m3/s), Pi 
is the analog flow (m3/s), Q  is average measured flow 
(m3/s), and P  is average analog flow (m3/s).

When Ens and R2 are closer to 1.0, the similarity 
between the simulated and measured values is strong. 
If both values are greater than 0.85, the degree of  
model fit is high and parameter adjustment is not 
essential. Otherwise, necessary parameters should be 
adjusted. The Ens and R2 were both higher than 0.85 by 
gradually narrowing the difference and the range of δ, 
with the final range of [0.37734, 0.37698]. Elongation is 
0.375.

Distribution coefficient k was identified with δ of 
0.375, and calculated from the experimental data of 
manganese mine runoff. Distribution coefficient k in 
18 sub-basins is shown in Table 5.
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Operating the Improved SWAT Model

The use of Fortran language for the integration  
of the manganese transformation model allows for 
modifying the software operation. The main steps are as 
follows:
1) Set the input and output parameters. The input 

parameters include C: mercury concentration in the 
selected model (mg/L); Dx: longitudinal turbulent 
diffusion coefficient (m2/s); A: the cross-sectional 
area of pollution flow (m2); u: velocity of pollution 
flow (m/s); x: migration distance (m); Hi: water depth 
(m); N: exchange velocity of pollutants between the 
bottom mud and water (mg·m/(L·s)); Cs: manganese 
concentration on the suspended particles in the 
soil-water interface flow (mg/L); Cw: manganese 
concentration in the soil-water interface flow  
(mg/L); C*: manganese concentration to be predicted 
(mg/L).

2) Define intermediate parameter: the distribution 
coefficient k and element difference correction  
factor δ.

3) Program subroutines and functional functions. 
The one-dimensional transformation model for 
manganese was programmed with Fortran. Then the 
one-dimensional model was embedded into SWAT. 
The results were obtained from the operation of the 
SWAT model, and displayed output in the final data 
set.

Model Validation and Results Analyses

Initial Operational Results for Improved 
SWAT

Initial operation was conducted with the 
determination of sensitivity parameters. The actual 
situation has some degree of discrepancy. Therefore, it 
is necessary to adjust the parameters in the later stage  
and re-run the model. The output results of initial 
operation and the comparison of simulated values 
with measured values for the improved model are 
summarized in Fig. 3.

Calibrating and Validating the Parameters

The improved SWAT model has 60 parameters, 
and before the model was calibrated and validated, 
a sensitivity analysis was carried out using the LH-
OAT method with the advantage of previous global 
and local analysis tests [28-29]. Finally, 10 sensitivity 
parameters were selected: runoff curve number (CN2), 
evaporation compensation coefficient of the soil (ESCO), 
available water of the soil (SOL_AWC), basis flow 
coefficient (ALPHA_BF), groundwater re-evaporation 
coefficient (GW_REVAP), surface runoff coefficient 
(SURLAG), linear index of the silt re-carried (SPCON), 
effective hydraulic conductivity of main river channel  
(CH_K2), residual decomposition factor (RSDCO), 
and the power index of the silt re-carried (SPEXP). On 

Sub-basin 1 2 3 4 5 6 7 8 9

k 2.1 1.6 9.32 7.11 4.08 3.88 8.69 2.98 7.98

Sub-basin 10 11 12 13 14 15 16 17 18

k 6.38 3.08 2.87 8.95 6.02 3.54 4.21 2.54 2.37

Table 5. Distribution coefficient k for Mn in each sub-basin.

Fig. 3. Comparison between measured and simulated values of 
initial operation for Mn pollution load in each sub-basin in 2012.

Sensitive parameters Value range Actual value

CN2
35-98 54

ESCO 0.01-1 0.7

SOL_AWC 0.1-1 0.6

ALPHA_BF 0-1 0.7

GW_REVAP 0.02-0.2 0.15

SURLAG 0-10 6

SPCON 0.0001-0.01 0.005

CH_K2 0.01-1.50 1.2

RSDCO 0.002-0.2 0.02

SPEXP 1.0-2.0 1.5

Table 6. Ranges and actual values of sensitivity parameters in the 
improved SWAT model.
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the basis of model sensitivity analysis, the SCE-UA 
algorithm proposed by DUAN [30-32] was applied to 
adjust the above sensitivity parameters and determine 
the numerical value of each parameter by satisfying the 
two-control standard for Ens and R2, which are greater 
than 0.85, respectively (Table 6).

The 1998-2002 data were used for calibration 
(first preliminary calibration with the annual data, 
then detailed calibration with the monthly data), and 
the 2003-2007 data were used for validation. Taking 
sub-basin 4 as an example, the results of the monthly 
calibration and validation are shown in Fig. 4.

Through the calibration of the 1998-2002 data of 
sub-basin 4, Ens and R2 were 0.85 and 0.88, respectively. 
Ens and R2 for the validation of the 2003-2007 data were 
0.87 and 0.90, respectively. After the calibration and 
validation of the above sensitivity parameters, the final 
results of the improved SWAT model were obtained 
(Fig. 5), the fitting degree of which was higher than that 
before calibration and validation (Fig. 3).

Operational Result and Analysis 
after Adjusting Parameters 

Based on the simulation results of the improved 
SWAT model, the distribution of manganese pollution 
load in the study area was derived using ARCGIS  
and RS. The pollution classification bands were  
defined as: less than 1.00 mg/L for light pollution,  
1.00-5.00 mg/L for general pollution, 5.00-10.00 mg/L 
for middle pollution, and higher than 10.00 mg/L 
for heavy pollution. Manganese pollution of the area 
identified by the improved SWAT model is shown in  
Fig. 6.

The results showed that there was quite a good 
degree of fit between the actual measured manganese 
contents and the simulated values (Ens = 0.88, 
R2 = 0.91). It was shown that sub-basins 3 and 7 were 
heavy pollution areas, corresponding to the red flag 
mine export and tailings processing district. Sub-basins 
9 and 13 were heavy pollution areas, corresponding to 
the major transport routes and slag district of the mine. 
The results were consistent with the actual pollution 
situation, demonstrating the high validity of the 
improved SWAT.

Conclusions

The 1D manganese migration and transformation 
kinetics model was obtained from the modification of 
1D mercury migration and transformation model. The 
1D migration model for manganese was embedded 
into the SWAT model to establish an improved SWAT 
model for predicting manganese pollution load in a 
manganese mine area in Hunan Province, China. The 
improved SWAT model exhibited a good fit between 
experimental and predicted data (Ens = 0.88, R2 = 0.91) 
for better prediction of heavy metal pollution load at the 

Fig. 6. Manganese pollution status in the study area.

Fig. 4. Simulated and measured values of manganese pollution 
load from 1998 to 2007 for sub-basin 4 in the study area.

Fig. 5. Measured and simulated values after calibration and 
validation of manganese pollution load for each sub-basin in 
2012.
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soil-water interface. The key pollution areas identified 
by the improved model were consistent with actual mine 
pollution. The model provides the potential possibility 
for application to other non-ferrous metal mine areas in 
China.
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